

WAFER-TYPE NON-RETURN VALVE RD40 DN 125 – DN 200

DESCRIPTION

The RD40 disc check valve has a compact design and was specially designed for use with steam and hot condensate.

Connections are flanged (wafer type)

MAIN FEATURES

Low pressure drop.

Simple and compact design.

Overall lengths according to DIN 3202 part 3-K4

OPTIONS: Soft sealing:

EPDM (E), NBR (N), VITON

(V), PTFE (T). Inconel springs

USE: Saturated steam, water and

other gases (Group 2) compatible with the

construction

AVAILABLE

MODELS: RD 40

SIZES: DN 125 to DN 200

CONNECTIONS: Sandwiched between flanges

as per EN 1092 or ANSI.

INSTALLATION: Horizontal or vertical installation

.See IMI, installation and

maintenance instructions.

RATING: PN 40

LIMIT OF

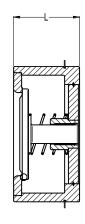
OPERATION: As per EN 1092

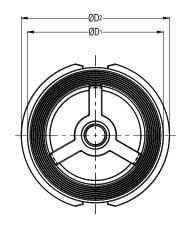
BODY LIMITING CONDITIONS		
ALLOW. PRES.	RELATED TEMP.	
40 bar	100 °C	
33,7 bar	200 °C	
31,8 bar	250 °C	
29,7 bar	300 °C	

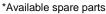
Minimum operating temperature: 20°C

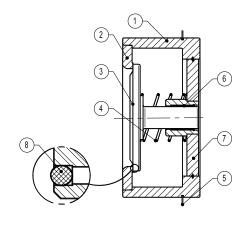
<u> </u>	

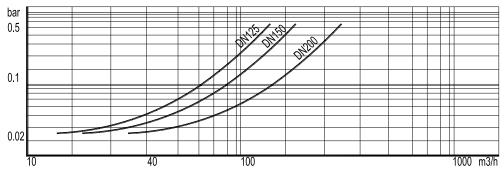
Recommended limit of operation with soft seats (°C)				
EPDM (E) NBR (N)		VITON (V)	PTFE(T)	
130°	95°	180°	180°	


CE MARKING (PED - European Directive)		
PN 40 Category		
DN125 -DN200	Category 2 (CE marked)	






DIMENSIONS (mm)							
DN	D1 PN10/16	D2 PN25	D2 PN40	D2 ANSI150	D2 ANSI300	L	Weight Kg
125	192	192	192	192	216	90	11
150	218	226	226	218	251	106	13,5
200	273	286	293	273	308	140	24


MATERIALS				
POS.	DESIGNATION	MATERIAL		
1	Valve body	S355J2G3 / 1.0570		
2	Seat	AISI316 / 1.4401		
3	*Disc	AISI316 / 1.4401		
4	*Spring	AISI302 / 1.4300		
5	Centering ring	AISI304 / 1.4301		
6	Bearing	Steel Fe Zn		
7	Star	S355J2G3 / 1.0570		
8	*Soft seal	See options		

Minimum opening pressures with standard spring in mbar				
DN		125	150	200
D.P.	A	37	40	46
D.P.	→	22	25	28
D.P.	*	7	10	10
Flow direction	Flow direction.			

Pressure drop, horizontal flow, standard spring (water - 20°)

To determine the pressure drop of other mediums the equivalent water flow volume has to be calculated: $V_W = \sqrt{\frac{Q}{1000}} \times V$ Vw = Equivalent water flow volume in m3/h; Q = Density in Kg/m3; V = Flow volume in m3/h.

VALSTEAM ADCA